Cook County
Department of Transportation and Highways

Public Meeting No. 3 | November 13, 20 I8

Main Exhibit Room

Quentin Road Study
 Dundee Road to Lake Cook Road

Public Meeting No. 3 | November 13, 20 I 8

Welcome to the
 Quentin Road Public Meeting

Quentin Road Study

Dundee Road to Lake Cook Road

Public Meeting No. 3 | November 13, 20 I 8

Comment Area

Quentin Road Study

Dundee Road to Lake Cook Road

Public Meeting No. 3 | November 13, 20 I 8

Quentin Road Public Meeting $2^{\text {nd }}$ Floor

Quentin Road Study

Dundee Road to Lake Cook Road

Public Meeting No. 3 | November 13, 2018

Quentin Road

 Public Meeting

Quentin Road Study

Dundee Road to Lake Cook Road

Public Meeting No. 3 | November 13, 20 I 8

Same Exhibits

On Both Sides

Quentin Road Study

Dundee Road to Lake Cook Road

Public Meeting No. 3 | November 13, 20 I 8

Same Exhibits

On Both Sides

Quentin Road Study

Dundee Road to Lake Cook Road

Public Meeting No. 3 | November 13, 20 I 8

Same Exhibits

On Both Sides

Quentin Road Study

Dundee Road to Lake Cook Road

Public Meeting No. 3 | November 13, 20 I 8

Same Exhibits

On Both Sides

Quentin Road Study

Dundee Road to Lake Cook Road

Public Meeting No. 3 | November 13, 20 I 8

Same Exhibits

On Both Sides

Quentin Road Study

Dundee Road to Lake Cook Road

Public Meeting No. 3 | November 13, 20 I 8

Same Exhibits

On Both Sides

Quentin Road Study

Dundee Road to Lake Cook Road

Public Meeting No. 3 | November I3, 20 I8

Slide Show

Presentation

Quentin Road Study

Dundee Road to Lake Cook Road

QUENTIN ROAD STUDY AREA MAP

QUENTIN ROAD STUDY AREA MAP

Study Area Map Legend

Park Facilities

1. Cuba Marsh Forest Preserve
2. Makray Memorial Golf Club
3. Charles E. Brown Park
4. Countryside West Park
5. Michael D'Angelo Park
6. Town Center Park
7. Palatine Hills Golf Course
8. Tom T. Hamilton Park
9. Eagle Park
10. Osage Park
11. Celtic Park

Shopping Centers

1. The Quentin Collection
2. Town Center Promenade
3. Deer Park Town Center Shopping Center
4. The Shops At Kildeer
5. Kildeer Marketplace
6. Joe Caputo \& Sons
7. Menards
8. City Limits Harley Davidson
9. Knupper Nursery \& Landscaping
10. Deer Grove Center

Employment Opportunities

1. Deer Park Office Center
2. Fed Ex

Existing Trails

*.... Unpaved Trail - Forest Preserve

- Paved Trail - Forest Preserve
--- Regional \& Local Trail - Non Forest Preserve

Churches

1. Church Of Christ, Palatine
2. Sikh Religious Society Of Chicago
3. New Life Church
4. Holy Resurrection Orthodox Church
5. Countryside Church Unitarian Universalist
6. Northwest Assembly Of God
7. Prince Of Peace Lutheran Church
8. The Church In Palatine
9. New Light Christian Church
10. Seventh-Day Adventist Church
11. Christian Pentecostal Center

Municipal Facilities

1. Village Of Inverness Village Hall and Police Station
2. Lake Zurich Rural Fire Protection District Station \#4

Schools

1. Walter R. Sundling Junior High School
2. Lincoln Elementary School
3. Long Grove Country School
4. Palatine High School
5. Virginia Lake Elementary School

Existing Average Daily Traffic (2015)

Village Boundaries

QUENTIN ROAD STUDY
EXISTING CONDITIONS INVENTORY

QUENTIN ROAD STUDY
EXISTING CONDITIONS INVENTORY

Project Purpose and Need

Established a basis for the range of reasonable alternatives

- Purpose: Address existing and 2040 transportation needs
- Strive to balance the transportation needs with the unique environmental setting along Quentin Road
Transportation Needs:

1. Improve the facility condition and design
2. Improve safety
3. Improve mobility
4. Enhance system linkage

Evaluation Round I

Alternatives Considered

Evaluation Round I Alternatives Considered

Quentin Road Alternatives

\triangleright Alternative I-Two-lanes
$\triangleright \quad$ Alternative 2 - Two-lanes with left turn lanes
\triangleright Alternative 3 -Three-lanes
\triangleright Alternative 4 - Four-lanes
\triangleright Alternative 5 - Four-lanes with left turn lanes
\triangleright Alternative 6 - Five-lanes

Other Parallel Route Alternatives

$\triangleright \quad$ Alternative 7 - Five-lane Ela Road (centered)
$\triangleright \quad$ Alternative 7a - Five-lane Ela Road (asymmetric)
\triangleright Alternative 8 - Seven-lane Hicks Road (centered)
\square Alternative 8a - Seven-lane Hicks Road (asymmetric)

Evaluation Round I

Quentin Road Alternatives

Evaluation Round I

Parallel Route Alternatives

Alternative 7
Alternative 7A
(Centered)
(Asymmetric)

Five Lanes on Ela Rd

- Two lanes in each direction
- Continuous median with left turn lane at side streets
- Alt 7A widens to the west to avoid the Deer Grove Forest Preserve
- Three lanes in each direction
- Continuous median with left turn lane at side streets
- Alt 8A widens to the east to avoid the Deer Grove Forest Preserve

Evaluation Round I Criteria

Improve Facility Condition and Design:

$>$ Replace the 100 year old failing bridge
\triangleright Reconstruct the poor pavement
\triangleright Correct the steep roadway grades
\triangleright Add medians or left turn lanes
\triangleright Add bicycle and pedestrian facilities

Improve Safety for Vehicles:

$>$ Reduce congestion related crashes by adding through lanes
\triangleright Reduce intersection related crashes by adding left-turn lanes and correct the steep roadway grades

Improve Safety for Non-motorized Traffic:

$>$ Provide pedestrian and bicycle facilities along Quentin Road

Effect on the Natural Environment:

$>$ Loss of Deer Grove Forest Preserve acreage
$>$ Direct impacts to wetlands

Improve Mobility:

\triangleright Provide additional through lane capacity to the roadway to ensure safe operations and to meet future traffic needs
\triangleright Provide left-turn lanes to move left turning vehicles out of the through lanes

Enhance System Linkage for Vehicles:

\triangleright Match the cross section of the roadway to the north and south (number of through lanes and center median for left turn lanes)
\triangleright Provide most direct connection for regional and local traffic

- Enhance System Linkage for Non-motorized Traffic:
\triangleright Provide connection to the existing surrounding trail systems

Evaluation Round I Results

Alternatives	QUENTIN ROAD ROW WIDTH	PURPOSE AND NEED CRITERIA ${ }^{1}$						ENVIRONMENTAL IMPACTS Natural Environment	
		Facility Condition and Design	Safety		Mobility	System Linkage			
			Vehicle	Nonmotorized		Vehicle	Nonmotorized	Loss of Deer Grove Forest Preserve Acreage (Acres)	Impacts to Wetlands (Acres)
No-Build	66' - 83'							0.0	0.00
Quentin Road									
1 - Two-lanes	90^{\prime}							1.9	0.88
2 - Two-lanes with left turn lanes	90'-100'							2.6	1.20
3 - Three-lanes	$100 '$							2.9	1.34
4 - Four-lanes	110^{\prime}							4.0	1.60
5 - Four-lanes with left turn lanes	110'-120'							4.4	1.76
6 - Five-lanes	120^{\prime}							4.9	1.96
Parallel Routes									
7 - Five-lane Ela Road (centered)	66' - 83'							1.9	0.0
7a - Five-lane Ela Road (asymmetric)	66' - 83'							0.0	0.0
8-Seven-lane Hicks Road (centered)	66' - 83'							0.5	0.0
8a - Seven-lane Hicks Road (asymmetric)	66' - 83'							0.0	0.0

Notes

1. Purpose and Need criteria are only rated as Best, Average, or Relatively Lowest Performance

LEGEND
Best Performance
Good Performance
Average Performance
Poor Performance
Relatively Lowest Performance

Evaluation Round 2 Alternatives Considered

Quentin Road Alternatives (Continue on from Round I)
\triangleright Alternative 2 - Two-lane with left turn lanes
\triangleright Alternative 3 -Three-lane
\triangleright Alternative 4 - Four-lane
\triangleright Alternative 5 - Four-lane with left turn lanes
\triangleright Alternative 6 - Five-lane

- Combination Alternatives (Added based on stakeholder input)
\triangleright Alternative 9 - Two-lane Quentin Road and Five-lane Ela Road
\triangleright Alternative 10 - Two-lane with left turn lane Quentin Road and Five-lane Ela Road
\triangleright Alternative II -Three-lane Quentin Road and Five-lane Ela Road
\triangleright Alternative 12 -Two-lane Quentin Road and Seven-lane Hicks Road
\triangleright Alternative I3-Two-lane with left turn lanes Quentin Road and Seven-lane Hicks Road
\triangleright Alternative 14 - Three-lane Quentin Road and Seven-lane Hicks Road

Evaluation Round 2
 Combination Alternatives (Ela Road)

Alternative 9
Two-Lane Quentin Road and Four-Lane Ela Road

- Combines Alternative 1 and Alternative 7A
- Two-lane Quentin Road with Four-lane Ela Road

Alternative 10
Two-Lane with Left Turn Lane Quentin Road and Four-Lane Ela Road

- Combines Alternative 2 and Alternative 7A
- Two-lane with left turn lanes Quentin Road and Four-lane Ela Road

Alternative 11
Three-Lane Quentin Road and Four-Lane Ela Road

- Combines Alternative 3 and Alternative 7A
- Three-lane Quentin Road with Four-lane Ela Road

Evaluation Round 2
 Combination Alternatives (Hicks Road)

Alternative 12
Two-Lane Quentin Road and Six-Lane Hicks Road

- Combines Alternative 1 and Alternative 8A
- Two-lane Quentin Road with Six-lane Hicks Road

Alternative 13
Two-Lane with Left Turn Lane Quentin Road and Six-Lane Hicks Road

- Combines Alternative 2 and Alternative 8A
- Two-lane with left turn lanes Quentin Road and Six-lane Hicks Road

Alternative 14
Three-Lane Quentin Road and Six-Lane Hicks Road

- Combines Alternative 3 and Alternative 8A
- Three-lane Quentin Road with Six-lane Hicks Road

Evaluation Round 2 Criteria

- Improve Facility Condition and Design:
\triangleright Replace the 100 year old failing bridge
\triangleright Reconstruct the poor pavement
\triangleright Correct the steep roadway grades
\triangleright Add medians or left turn lanes
\triangleright Add bicycle and pedestrian facilities

Improve Safety for Vehicles:

\triangleright Reduce congestion related crashes by adding through lanes
\triangleright Reduce intersection related crashes by adding left-turn lanes and correct the steep roadway grades

Improve Safety for Non-motorized Traffic:

\triangleright Provide pedestrian and bicycle facilities along Quentin Road

Effect on the Natural Environment:

\triangleright Loss of Deer Grove Forest Preserve acreage
\triangleright Direct impacts to wetlands

- Improve Mobility:
\triangleright Provide additional through lane capacity to the roadway to ensure safe operations and to meet future traffic needs
\triangleright Provide left-turn lanes to move left turning vehicles out of the through lanes

Enhance System Linkage for Vehicles:

\triangleright Match the cross section of the roadway to the north and south (number of through lanes and center median for left turn lanes)
\triangleright Provide most direct connection for regional and local traffic

- Enhance System Linkage for Non-motorized Traffic:
\triangleright Provide connection to the existing surrounding trail systems

Effect on the Human Environment

\triangleright Potential displacements of residential property
\triangleright Changes in travel patterns and access on Quentin Road

Evaluation Round 2 Results

Alternatives	QUENTIN ROAD ROW WIDTH	PURPOSE AND NEED CRITERIA ${ }^{1}$						ENVIRONMENTAL IMPACTS			
		Facility Condition and Design	Safety		Mobility	System Linkage		Natural Environment		Human Environment	
			Vehicle	Nonmotorized		Vehicle	Nonmotorized	Loss of Deer Grove Forest Preserve Acreage (Acres)	Impacts to Wetlands (Acres)	Potential Displacements	Change in Travel Patterns and Access on Quentin Road
No-Build	66' - 83'							0.0	0.00	0	
Quentin Road											
2 - Two-lanes with left turn lanes	90' - 100'							2.6	1.20	0	
3 - Three-lanes	100'							2.9	1.34	0	
4 - Four-lanes	110'							4.0	1.60	0	
5 - Four-lanes with left turn lanes	110' - 120'							4.4	1.76	0	
6 - Five-lanes	120'							4.9	1.96	0	
Combination Alternatives ${ }^{2}$											
9 - Two-lane Quentin Road \& Five-Iane Ela Road	66' - 83'							1.9	0.88	23	
10-Two-lanes with left turn lanes Quentin Road \& Five-lane Ela Road	90' - 100'							2.6	1.20	23	
11 - Three-Iane Quentin Road \& Five-lane Ela Road	100'							2.9	1.34	23	
12- Two-Iane Quentin Road \& Seven-Iane Hicks Road	66' - 83'							1.9	0.88	13	
13-Two-lanes with left turn lanes Quentin Road \& Seven-lane Hicks Road	90' - 100'							2.6	1.20	13	
14 - Three-Iane Quentin Road \& Seven-Iane Hicks Road	100'							2.9	1.34	13	

[^0]. Purpose and Need criteria are only rated as Best, Average, or Relatively Lowest Performance
2. Parallel Route Alternatives considered for evaluation as combination alternatives were those which were shifted away from the forest preserve (Alternatives 7 a and 8 a) to

[^1]LEGEND
Best Performance
Good Performance
Average Performance
Poor Performance
Relatively Lowest Performance

Evaluation Round 2 Flowchart

Evaluation Round 3

Quentin Road Alternatives

Alternative 2 (A-D)

Two Lanes on Quentin Rd with Left Turn Lanes

- One lane in each direction
- Left turn lane at side streets

Alternative 3 (A-D)

Three Lanes on Quentin Rd

- One lane in each direction
- Continuous median with left turn lane at side streets

Sub Alternative

A - 12 ' lanes with curb

C -11^{\prime} lanes with curb

Descriptions and gutter

B -12^{\prime} lanes with shoulders and gutter

D -11^{\prime} lanes with shoulders
Alternative 6 (A-D)

Five Lanes on Quentin Rd

- Two lanes in each direction
- Continuous median with left turn lane at side streets

Evaluation Round 3 Alternatives Considered

Quentin Road Alternatives (Continue on from Round 2)
$>\quad$ Alternative 2 -Two-lane with left turn lanes
\triangleright Alternative 3 -Three-lane
\triangleright Alternative 5 - Four-lane with left turn lanes
\triangleright Alternative 6 - Five-lane

Sub Alternative Descriptions

- A - 12' lanes with curb and gutter
- B - I2' lanes with shoulders
$>$ C - II'lanes with curb and gutter
- D - II' lanes with shoulders

Evaluation Round 3 Criteria

- Improve Facility Condition and Design:
\triangleright (Same as Evaluation Rounds I \& 2)

Improve Safety for Vehicles:
\triangleright (Same as Evaluation Rounds I \& 2)

Improve Safety for Non-motorized Traffic:
\triangleright (Same as Evaluation Rounds I \& 2)

Improve Mobility:

\triangleright (Same as Evaluation Rounds I \& 2)

Enhance System Linkage for Vehicles:
\triangleright (Same as Evaluation Rounds I \& 2)

- Enhance System Linkage for Non-motorized Traffic:
\triangleright (Same as Evaluation Rounds I \& 2)

Effect on the Natural Environment:
$>$ Property impacts

- FPCC Property and Non-FPCC property
\triangleright Tree removal
\triangleright Direct impacts to wetlands
- All wetlands
- High-quality wetlands (Floristic Quality Index >20)
\triangleright Floodplain impacts

Environmental Components

\triangleright Noise levels

- Water quality
\triangleright Detention

Evaluation Round 3 Results

Alternatives	PURPOSE AND NEED CRITERIA						DESIGN INFORMATION		NATURAL ENVIRONMENT						ENVIRONMENTAL COMPONENTS		
	Facility Condition and Design	Safety		Mobility	System Linkage		Cross Section	Row Width ${ }^{1}$	Property Acquisition		Tree Removal (Each)	Impacts to Wetlands		Impacts to Floodplain (Acres)	Noise Level ${ }^{2}$ (dBA)	$\begin{aligned} & \text { Water } \\ & \text { Quality }{ }^{3} \end{aligned}$	Detention ${ }^{4}$
		Vehicle	Non- motorized		Vehicle	Non- motorized			FPCC Property (Acres)	Non-FPCC Property (Acres)		$\begin{aligned} & \text { Total } \\ & \text { (Acres) } \end{aligned}$	$\begin{gathered} \hline \text { High-Quality } \\ \text { FQI >20 } \\ \text { (Acres) } \end{gathered}$				
No-Build								66' - 83'							62		
Quentin Road																	
2 - Two-lanes with left turn lanes ${ }^{5}$							2A-12' C\&G	90' - 100'	2.6	0.5	954	1.20	0.68	0.09	63		
							2B-12' Shoulder	129'-139'	5.9	1.4	1,682	2.24	1.34	0.45	63		
							2C-11' C\&G	90' - $96{ }^{\prime}$	2.3	0.4	885	1.08	0.61	0.07	63		
							2D-11' Shoulder	129'-136'	5.6	1.3	1,626	2.14	1.26	0.40	63		
3-Three lanes ${ }^{5}$							3A-12' C\&G	100'	2.9	0.5	1,066	1.34	0.76	0.10	63		
							3B-12' Shoulder	${ }^{139}$	6.2	1.4	1,769	2.36	1.40	0.47	63		
							3C-11' C\&G	${ }^{96}$	2.6	0.4	1,003	1.23	0.69	0.08	63		
							3D-11' Shoulder	${ }^{136}$	5.9	1.3	1,715	2.25	1.33	0.42	63		
5 - Four lanes with left turn lanes							5A-12' C\&G	110' - 120'	4.4	1.0	1,354	1.76	1.02	0.25	64		
							5B-12' Shoulder	155' - 163'	8.0	2.0	2,067	2.85	1.75	0.77	64		
							5C-11' C\&G	108'-114'	3.9	0.8	1,229	1.60	0.91	0.20	64		
							5D-11' Shoulder	151'-157'	7.5	1.8	1,965	2.71	1.65	0.68	64		
6 - Five lanes							6A-12' C\&G	$120 \cdot$	4.9	1.2	1,508	1.96	1.13	0.28	64		
							6B-12' Shoulder	$163 '$	8.5	2.2	2,196	3.03	1.86	0.81	64		
							6C-11' C\&G	114'	4.4	1.1	1,387	1.80	1.03	0.22	64		
							6D-11' Shoulder	$157{ }^{\prime}$	8.0	2.1	2,096	2.89	1.76	0.73	64		

Notes

1. Right-of-way width is based on a typical cross section outside of the curb \& gutter or shoulder
2. Preliminary predicted noise levels are for Camp Reinberg. Per the IDOT Traffic Noise Assessment Manual; June 2011 , "A change of 3 dBA is barely perceivable change in noise.".
3. Shoulder sections provide a greater water quality benefit than those with curb and gutter, while 3 -lane sections require less water quality measures than those with 5 lanes.
4. Detention performance is related to the proposed roadway footprint and the volume of stormwater runoff that would need to be detained due to the increase in impervious area
5. Alternative does not fully meet the project Purpose and Need.

LEGEND

Best Performance
Good Performance Average Performance Poor Performance
Relatively Lowest Performance
No dis cernable difference between alternatives

Evaluation Round 3 Flowchart

Evaluation Round 4

Quentin Road Alternatives

Three Lanes on Quentin Rd

- One lane in each direction
- Continuous median with left turn lane at side streets
- 11' lanes with curb and gutter

Four Lanes on Quentin Rd with Left Turn Lanes

- Two lanes in each direction
- Left turn lane at side streets
- 11' lanes with curb and gutter

Evaluation Round 4 Criteria

Purpose and Need Criteria

\triangleright Same as Evaluation Rounds $1,2 \& 3$:

- Improve Facility Condition and Design
- Improve Mobility
- Enhance System Linkage for Vehicles
- Enhance System Linkage for Non-motorized Traffic
\triangleright Highway Safety Manual Analysis:
- Improve Safety for Vehicles
- Improve Safety for Non-motorized Traffic:

Environment Assessment Criteria:

\triangleright Property acquisition

- FPCC Property - Temporary and Permanent Easement
- Non-FPCC Property - Temporary Easement and Proposed Right-of-Way
\triangleright Tree removal
- Broken down be FPCC Index-value (value ranges from 0 to I)
- Dead/invasive, low, moderate, high, highest quality
\triangleright Direct impacts to wetlands
- High-quality (Floristic Quality Index $(\mathrm{FQI})>20$ of C -value >3.5)
- Moderate quality ($10<\mathrm{FQI}<20$)
- Low quality $(\mathrm{FQI}<10)$
- Environment Assessment Criteria (continued):
\triangleright Direct impacts to floodways and floodplain
- Fill within floodway
- Fill within floodplain
\triangleright Environmental Components
- Preliminary predicted noise levels at Camp Reinberg
- Salt Splash and Spray
- Chlorides - Arlington Heights Branch of Salt Creek and Unnamed Tributary to Buffalo Creek
- Metals (Copper, Lead \& Zinc) - Arlington Heights Branch of Salt Creek and Unnamed Tributary to Buffalo Creek
- Total Suspended Solids - Arlington Heights Branch of Salt Creek and Unnamed Tributary to Buffalo Creek

Evaluation Round 4 Results

CRITERIA/IMPACTS	ALTERNATIVES			
	3C - Three 11' lanes with curb and gutter		5 C - Four 11' lanes with left turn lanes and curb and gutter	
	Open Detention	Closed Detention	Open Detention	Closed Detention
PURPOSE AND NEED CRITERIA				
Fully Meets the Purpose and Need ${ }^{1}$				
Improve Facility Condition and Design	Yes		Yes	
Safety: Vehicle	Yes		Yes	
Safety: Non-Motorized	Yes		Yes	
Mobility	No		Yes	
System Linkage: Vehicle	No		Yes	
System Linkage: Non-Motorized	Yes		Yes	
ENVIRONMENTAL ASSESSMENT CRITERIA				
Property Acquisition				
FPCC Property (Acres)	7.67	4.72	8.54	6.00
Temporary Easement	3.56	4.03	3.81	4.55
Permanent Easement	4.11	0.69	4.74	1.45
Non-FPCC Property (Acres)	0.98	0.98	1.10	1.10
Temporary Easement	0.69	0.69	0.63	0.63
Right-of-Way	0.29	0.29	0.47	0.47
Trees ${ }^{2}$				
Total (Each)	1,564	1,003	1,813	1,335
Highest Quality (($\mathrm{dex}=1$)	531	321	643	464
High Quality (Index = 0.75)	269	179	295	219
Moderate Quality (I dex $=0.5$)	66	39	78	54
Low Quality (Index = 0.20)	90	76	105	91
Dead/Invasive (Index = 0)	608	388	692	507
Wetlands				
Total (Acres)	2.16	1.23	2.36	1.65
High Quality (FQI >20 or C-value $>3.5)^{3}$	0.72	0.72	0.93	0.93
Moderate Quality (10 < FQI < 20)	1.14	0.28	1.14	0.46
Low Quality (FOL < 10)	0.29	0.23	0.29	0.26
Floodways / Floodplains				
Total (Acres)	0.48		0.72	
Fill within Floodway	0.33		0.45	
Fill within Floodplain	0.16		0.28	

CRITERIA/IMPACTS	Existing Conditions	ALTERNATIVES	
		3C - Three 11' lanes with curb and gutter	5C - Four 11' lanes with left turn lanes and curb and gutter
ENVIRONMENTAL ASSESSMENT CRITERIA (CONTINUED)			
Environmental Components			
Noise Level (dBA) ${ }^{4}$	61	63	64
Salt Splash and Spray ${ }^{5}$	No change	5.5 feet beyond existing condition	13 feet to 16.5 feet beyond existing condition
Chlorides ($\mathrm{mg} / \mathrm{L})^{6}$			
Arlington Heights Branch of Salt Creek	29	30	32
Unnamed Tributary to Buffalo Creek	86	108	142
Metals (mg/L) ${ }^{7}$			
Copper			
Arlington Heights Branch of Salt Creek	0.012	0.013	0.015
Unnamed Tributary to Buffalo Creek	0.0047	0.0047	0.0047
Lead			
Arlington Heights Branch of Salt Creek	0.011	0.012	0.013
Unnamed Tributary to Buffalo Creek	0.0076	0.0076	0.0077
Zinc			
Arlington Heights Branch of Salt Creek	0.043	0.048	0.053
Unnamed Tributary to Buffalo Creek	0.0615	0.0615	0.0615
Total Suspended Solids ($\mathrm{mg} / \mathrm{L})^{7}$			
Arlington Heights Branch of Salt Creek	55	61	68
Unnamed Tributary to Buffalo Creek	107	106.89	106.68

Notes:

1. The No Build Alternative does not fully meet the purpose and need nor provide any water quality/storm water detention volume benefit.
2. Tree quality is based on the index value for each species as identified in the approved FPCC Tree Mitigation Plan as amended
3. High-quality wetlands as defined by the United States Army Corps of Engineers.
4. Preliminary predicted noise levels are for Camp Reinberg. Per the IDOT Traffic Noise Assessment Manual; June 2011, "A change of 3 dBA is barely perceivable change in noise."
5. Distance is influenced by a number of factors including velocity of vehicles, roadside slope, drainage, traffic levels, wind/weather conditions, and intensity/frequency of salt application.
6. Levels for both alternatives are under the regulatory requirements for aquatic life.
7. No net change to pollutants with Best Management Practices (BMPs).

Evaluation Round 4 Flowchart

Alternative 3C

Bird's-eye View

Alternative 3C
 Street Level View

Alternative 5C

Bird's-eye View

Alternative 5C Street Level View

Environmental Stakeholder Coordination

Deer Grove Forest Preserve is a special and unique place. Given its sensitivity and resources, a series of meetings was held with the environmental stakeholders, both as a large group to discuss overall concerns, and as a series of smaller focus groups to discuss specific topics.

Environmental Stakeholder Group Members

- Forest Preserves of Cook County
- Friends of the Forest Preserve
- Openlands
- Build Quentin Right
- Deer Grove Natural Areas Volunteers
- Cook County Department of Transportation and Highways

Environmental Stakeholder Coordination Schedule

6/28/16 Stakeholder Meeting \#2

4/10/17
Stakeholder Meeting \#4

Dec 2018/Jan 2019
Stakeholder
Meeting \#6

Focus Groups

Small groups of environmental stakeholder members were formed to provide open and transparent dialogue on important topics and share data and insight between various stakeholders.

Water

Animal /
 Vegetation

Roadway
 Character

Safety for All Users

Focus Groups

Small groups of environmental stakeholder members were formed to provide open and transparent dialogue on important topics and share data and insight between various stakeholders.

Water

Discussion Areas

- Salt
- Drainage Patterns \& Outfalls
- Impacts on Well \& Septic
- Detention
- Wetlands
- Water Quality \& Quantity
- Stormwater Management
- Mitigation \& Avoidance

Recommendations

\checkmark Salt run-off, splash, and spray are important environmental consideration to water quality as well as sensitive animals and plants.
\checkmark CCDOTH is considering Best Management Practices (BMPs) to remove pollutants such as metals and temporary suspended solids.
\checkmark Drainage patterns and outfalls will stay the same as today and detention will be provided to keep the existing flow rate leaving Quentin Road.
\checkmark Wells and septic will not be impacted.

Focus Groups

Small groups of environmental stakeholder members were formed to provide open and transparent dialogue on important topics and share data and insight between various stakeholders.

Animals / Vegetation

Discussion Areas

- Salt
- Mitigation \& Avoidance
- Trees
- Retaining Wall Impacts to Wildlife \& Habitat
- Noise
- Wildlife Crossings
- Light

Recommendations
\checkmark Salt run-off, splash, and spray are important environmental consideration to water quality as well as sensitive animals and plants.
\checkmark CCDOTH is considering Best Management Practices (BMPs) to remove pollutants such as metals and temporary suspended solids.
\checkmark Lower the roadway speed limit to 40 mph to reduce salt spray and splash.

Focus Groups

Small groups of environmental stakeholder members were formed to provide open and transparent dialogue on important topics and share data and insight between various stakeholders.

Roadway Character

Recommendations
\checkmark Provide separation between the roadway and multi-use path.
\checkmark Provide shorter and aesthetically pleasing retaining wall designs that fit within the surrounding area.
\checkmark Fix sight lines but don't eliminate hills and valleys of the roadway.

Focus Groups

Small groups of environmental stakeholder members were formed to provide open and transparent dialogue on important topics and share data and insight between various stakeholders.

Safety for all Users

Discussion Areas

- Paths \& Sidewalks
- Left Turn Lanes
- Line of Sight
- Crossings
- Crashes \& Speed
- Roadway Profile

Recommendations
\checkmark Reduce the speed limit to 40 mph .
\checkmark Provide separate left turn lanes at intersecting streets (except at Hillcrest Road) and at the Deer Grove entrance.
\checkmark Provide a multi-use path the entire length of the project.
\checkmark Provide marked pedestrian crossings across all intersecting roadways.
\checkmark Improve the line of sight.

Water Quality Studies

- Environmental Stakeholder Group and Focus Group requested more studies on water quality
- Goal of the studies were to answer important questions about:
\triangleright Salt
- Water Quality \& Quantity
$\triangleright \quad$ Drainage Patterns \& Outfalls
- Quentin Road stretches across two watersheds
\triangleright Arlington Heights Branch of Salt Creek
$\triangleright \quad$ Unnamed Tributary to Buffalo Creek
- Detailed Studies for Chlorides
$\triangleright \quad$ Used USGS Frost Model for chloride analysis
- Detailed Studies for Metals and Total Suspended Solids (TSS)
$\triangleright \quad$ Used FHWA's Driscoll Model for analysis within Arlington Heights Branch of Salt Creek watershed
$\triangleright \quad$ Used USGS Drive Model for analysis within Unnamed Tributary to Buffalo Creek watershed

Salt Spray and Salt Splash

- Studies indicate that 60 to 80 percent of salt runs off with surface runoff, 15 to 35 percent occurs as splash, and up to 3 percent occurs as aerosol spray.
- Salt splash and spray exposure distances vary according to several factors, such as roadway slope, drainage, traffic levels, wind and weather conditions, and the intensity and frequency of salt treatments.
- Splash is greatest within 45 to 60 feet of edge of pavement.
- Spray can carry for greater distances as dry deposition.
- The deposition of salt decreases with distance.

Chloride Analysis - USGS Frost Model

- Developed using multiple and simple linear regression models
- Approved by the IEPA for use in estimating pollutant loading from roadway projects as part of Clean Water Act Section 40I permitting
- Predicted chloride loading contributed by Quentin Road within the project limits for each watershed

Results

	Arlington Heights Branch Salt Creek			UNT to Buffalo Creek		
	Existing	Alternative $3 C$	Alternative 5C	Existing	Alternative $3 C$	Alternative 5C
Drainage Area (sq. mi.)	3			0.2		
Lane Miles (mi.)	1.08	1.42	1.93	1.5	2.06	2.91
Salt Applied (tons/mi.)	6.7					
Salt Applied (tons)	7.24	9.51	12.93	10.05	13.8	19.5
Annual Maximum of Daily Mean Chloride Concentrations (mg/L)	29	30	32	86	108	142

Conclusions

- None of the predicted downstream concentrations for proposed conditions were above the water quality standard for chloride ($500 \mathrm{mg} / \mathrm{L}$).
- No net increase in chlorides with incorporation of Best Management Practices within the larger Salt Creek and Buffalo Creek watersheds.
- The Department is considering alternatives to reduce salt spray along Quentin Road including the reduction of the speed limit.
- The Department acknowledges that there is a difference in the amount of chloride applied for Alternatives 3C and 5C and has presented the results of analysis in the Draft Water Quality Modeling Report.
- Chloride is just one of many criteria for consideration to evaluate the benefits of Alternatives 3C and 5C.

Metals and Total Suspended Solids Analysis
 FHWA Driscoll Model - Arlington Heights Branch of Salt Creek

Results

Stream / Driscoll Model Scenario	General Use Water Quality Acute Standard			FHWA DRISCOLL RESULTS			
				Future Once-In-Three-Years Stream Pollutant Concentration Without PostConstruction Stormwater BMPs			
	Copper (mg/L)	$\begin{aligned} & \text { Lead } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{gathered} \text { Zinc } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	Copper (mg/L)	$\begin{aligned} & \text { Lead } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{gathered} \text { Zinc } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { TSS } \\ \text { (mg/L) } \end{gathered}$
Existing	0.042	0.21	0.268	0.012	0.011	0.043	55
Alternative 3C	0.042	0.21	0.268	0.013	0.012	0.048	61
Alternative 5C	0.042	0.21	0.268	0.015	0.013	0.053	68

The FHWA Driscoll Model is a statistical model

Model is approved by the IEPA for use in estimating pollutant loading from roadway projects as part of Clean Water Act Section 401 permitting

- Predicted Metal and TSS loading contributed by the segment of Quentin Road within the project limits and Arlington Heights Branch of Salt Creek Watershed

BMP	Pollutant Reduction Remaining Coefficient			
	Copper (Cu)	Lead (Pb)	Zinc (Zn)	TSS
Basin	0.540	0.330	0.370	0.170
Vegetated Swale	0.540	0.330	0.370	0.200
Stormceptor	0.288	0.432	0.288	0.480

Metals and Total Suspended Solids Analysis USGS Driver Model - UNT to Buffalo Creek

Results

- The USGS Driver Model is a multiple linear regression analysis
- Model is approved by the IEPA for use in estimating pollutant loading from roadway projects as part of Clean Water Act Section 401 permitting
- Predicted Metal and Total Suspended Solids (TSS) loading contributed by the segment of Quentin Road within the project limits and Unnamed Tributary to Buffalo Creek Watershed

Stream	General Use Water Quality Acute Standard			USGS DRIVER RESULTS			
				Storm Runoff Mean Pollutant Concentration Without Post-Construction Stormwater BMPs			
	Copper (mg/L)	Lead $(\mathrm{mg} / \mathrm{L})$	$\begin{aligned} & \text { Zinc } \\ & \text { (mg/L) } \end{aligned}$	Copper (mg/L)	$\begin{aligned} & \text { Lead } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	Zinc $(m g / L)$ (mg/L)	$\begin{aligned} & \text { TSS } \\ & \text { (mg/L) } \end{aligned}$
Existing	0.042	0.21	0.268	0.019	0.067	0.191	230.08
Alternative 3C	0.042	0.21	0.268	0.019	0.067	0.195	225.18
Alternative 5C	0.042	0.21	0.268	0.019	0.072	0.198	220.61

BMP	Pollutant Reduction Remaining Coefficient			
	Copper (Cu)	Lead (Pb)	Zinc (Zn)	TSS
Basin	0.540	0.330	0.370	0.170
Vegetated Swale	0.540	0.330	0.370	0.200
Stormceptor	0.288	0.432	0.288	0.480

- None of the predicted downstream concentrations for proposed conditions were above the general use acute water quality standards.
- No net increase in Metals and TSS is anticipated with incorporation of Best Management Practices (see Pollutant Reduction Remaining Coefficient).
- Downstream concentrations within Buffalo Creek were predicted by conducting a mass balance of the watershed using the rational method equation

Parameter			RATIONAL METHOD General Use Water Quality Acute Standard	
		Existing Concentration in Buffalo Creek	Without Post-Construction Stormwater BMPs	
			Alternative 3C	Alternative 5C
Copper, dissolved (mg/L)	0.042	0.0047	0.0047	0.0047
Lead, dissolved (mg/L)	0.21	0.0076	0.0076	0.0077
Zinc, dissolved (mg/L)	0.268	0.0615	0.0615	0.0615
TSS (mg/L)	---	107	106.89	106.68

Study Timeline

- Conclude Public Comment Period on November 30th

Identify the Preferred Alternative

- Prepare the Environmental Assessment (EA)
- Hold a Public Hearing for Comments
- Study Approval

[^0]: Notes

[^1]: minimize/avoid impacts to the forest preserve property and resources to the greatest extent possible

